/* * This file is part of Libsvgtiny * Licensed under the MIT License, * http://opensource.org/licenses/mit-license.php * Copyright 2008 James Bursa */ #include #include #include #include #include #include "svgtiny.h" #include "svgtiny_internal.h" #undef GRADIENT_DEBUG static svgtiny_code svgtiny_parse_linear_gradient(dom_element *linear, struct svgtiny_parse_state_gradient *grad, struct svgtiny_parse_state *state); static float svgtiny_parse_gradient_offset(const char *s); static void svgtiny_path_bbox(float *p, unsigned int n, float *x0, float *y0, float *x1, float *y1); static void svgtiny_invert_matrix(float *m, float *inv); /** * Find a gradient by id and parse it. */ void svgtiny_find_gradient(const char *id, struct svgtiny_parse_state_gradient *grad, struct svgtiny_parse_state *state) { dom_element *gradient; dom_string *id_str, *name; dom_exception exc; #ifdef GRADIENT_DEBUG fprintf(stderr, "svgtiny_find_gradient: id \"%s\"\n", id); #endif grad->linear_gradient_stop_count = 0; if (grad->gradient_x1 != NULL) dom_string_unref(grad->gradient_x1); if (grad->gradient_y1 != NULL) dom_string_unref(grad->gradient_y1); if (grad->gradient_x2 != NULL) dom_string_unref(grad->gradient_x2); if (grad->gradient_y2 != NULL) dom_string_unref(grad->gradient_y2); grad->gradient_x1 = dom_string_ref(state->interned_zero_percent); grad->gradient_y1 = dom_string_ref(state->interned_zero_percent); grad->gradient_x2 = dom_string_ref(state->interned_hundred_percent); grad->gradient_y2 = dom_string_ref(state->interned_zero_percent); grad->gradient_user_space_on_use = false; grad->gradient_transform.a = 1; grad->gradient_transform.b = 0; grad->gradient_transform.c = 0; grad->gradient_transform.d = 1; grad->gradient_transform.e = 0; grad->gradient_transform.f = 0; exc = dom_string_create_interned((const uint8_t *) id, strlen(id), &id_str); if (exc != DOM_NO_ERR) return; exc = dom_document_get_element_by_id(state->document, id_str, &gradient); dom_string_unref(id_str); if (exc != DOM_NO_ERR || gradient == NULL) { #ifdef GRADIENT_DEBUG fprintf(stderr, "gradient \"%s\" not found\n", id); #endif return; } exc = dom_node_get_node_name(gradient, &name); if (exc != DOM_NO_ERR) { dom_node_unref(gradient); return; } if (dom_string_isequal(name, state->interned_linearGradient)) svgtiny_parse_linear_gradient(gradient, grad, state); dom_node_unref(gradient); dom_string_unref(name); #ifdef GRADIENT_DEBUG fprintf(stderr, "linear_gradient_stop_count %i\n", grad->linear_gradient_stop_count); #endif } /** * Parse a element node. * * http://www.w3.org/TR/SVG11/pservers#LinearGradients */ svgtiny_code svgtiny_parse_linear_gradient(dom_element *linear, struct svgtiny_parse_state_gradient *grad, struct svgtiny_parse_state *state) { unsigned int i = 0; dom_string *attr; dom_exception exc; dom_nodelist *stops; exc = dom_element_get_attribute(linear, state->interned_href, &attr); if (exc == DOM_NO_ERR && attr != NULL) { if (dom_string_data(attr)[0] == (uint8_t) '#') { char *s = strndup(dom_string_data(attr) + 1, dom_string_byte_length(attr) - 1); svgtiny_find_gradient(s, grad, state); free(s); } dom_string_unref(attr); } exc = dom_element_get_attribute(linear, state->interned_x1, &attr); if (exc == DOM_NO_ERR && attr != NULL) { dom_string_unref(grad->gradient_x1); grad->gradient_x1 = attr; attr = NULL; } exc = dom_element_get_attribute(linear, state->interned_y1, &attr); if (exc == DOM_NO_ERR && attr != NULL) { dom_string_unref(grad->gradient_y1); grad->gradient_y1 = attr; attr = NULL; } exc = dom_element_get_attribute(linear, state->interned_x2, &attr); if (exc == DOM_NO_ERR && attr != NULL) { dom_string_unref(grad->gradient_x2); grad->gradient_x2 = attr; attr = NULL; } exc = dom_element_get_attribute(linear, state->interned_y2, &attr); if (exc == DOM_NO_ERR && attr != NULL) { dom_string_unref(grad->gradient_y2); grad->gradient_y2 = attr; attr = NULL; } exc = dom_element_get_attribute(linear, state->interned_gradientUnits, &attr); if (exc == DOM_NO_ERR && attr != NULL) { grad->gradient_user_space_on_use = dom_string_isequal(attr, state->interned_userSpaceOnUse); dom_string_unref(attr); } exc = dom_element_get_attribute(linear, state->interned_gradientTransform, &attr); if (exc == DOM_NO_ERR && attr != NULL) { float a = 1, b = 0, c = 0, d = 1, e = 0, f = 0; char *s = strndup(dom_string_data(attr), dom_string_byte_length(attr)); if (s == NULL) { dom_string_unref(attr); return svgtiny_OUT_OF_MEMORY; } svgtiny_parse_transform(s, &a, &b, &c, &d, &e, &f); free(s); #ifdef GRADIENT_DEBUG fprintf(stderr, "transform %g %g %g %g %g %g\n", a, b, c, d, e, f); #endif grad->gradient_transform.a = a; grad->gradient_transform.b = b; grad->gradient_transform.c = c; grad->gradient_transform.d = d; grad->gradient_transform.e = e; grad->gradient_transform.f = f; dom_string_unref(attr); } exc = dom_element_get_elements_by_tag_name(linear, state->interned_stop, &stops); if (exc == DOM_NO_ERR && stops != NULL) { uint32_t listlen, stopnr; exc = dom_nodelist_get_length(stops, &listlen); if (exc != DOM_NO_ERR) { dom_nodelist_unref(stops); goto no_more_stops; } for (stopnr = 0; stopnr < listlen; ++stopnr) { dom_element *stop; float offset = -1; svgtiny_colour color = svgtiny_TRANSPARENT; exc = dom_nodelist_item(stops, stopnr, (dom_node **) (void *) &stop); if (exc != DOM_NO_ERR) continue; exc = dom_element_get_attribute(stop, state->interned_offset, &attr); if (exc == DOM_NO_ERR && attr != NULL) { char *s = strndup(dom_string_data(attr), dom_string_byte_length(attr)); offset = svgtiny_parse_gradient_offset(s); free(s); dom_string_unref(attr); } exc = dom_element_get_attribute(stop, state->interned_stop_color, &attr); if (exc == DOM_NO_ERR && attr != NULL) { svgtiny_parse_color(attr, &color, NULL, state); dom_string_unref(attr); } exc = dom_element_get_attribute(stop, state->interned_style, &attr); if (exc == DOM_NO_ERR && attr != NULL) { char *content = strndup(dom_string_data(attr), dom_string_byte_length(attr)); const char *s; dom_string *value; if ((s = strstr(content, "stop-color:"))) { s += 11; while (*s == ' ') s++; exc = dom_string_create_interned( (const uint8_t *) s, strcspn(s, "; "), &value); if (exc != DOM_NO_ERR && value != NULL) { svgtiny_parse_color(value, &color, NULL, state); dom_string_unref(value); } } free(content); dom_string_unref(attr); } if (offset != -1 && color != svgtiny_TRANSPARENT) { #ifdef GRADIENT_DEBUG fprintf(stderr, "stop %g %x\n", offset, color); #endif grad->gradient_stop[i].offset = offset; grad->gradient_stop[i].color = color; i++; } dom_node_unref(stop); if (i == svgtiny_MAX_STOPS) break; } dom_nodelist_unref(stops); } no_more_stops: if (i > 0) grad->linear_gradient_stop_count = i; return svgtiny_OK; } float svgtiny_parse_gradient_offset(const char *s) { int num_length = strspn(s, "0123456789+-."); const char *unit = s + num_length; float n = atof((const char *) s); if (unit[0] == 0) ; else if (unit[0] == '%') n /= 100.0; else return -1; if (n < 0) n = 0; if (1 < n) n = 1; return n; } /** * Add a path with a linear gradient fill to the svgtiny_diagram. */ svgtiny_code svgtiny_add_path_linear_gradient(float *p, unsigned int n, struct svgtiny_parse_state *state) { struct grad_point { float x, y, r; }; float object_x0, object_y0, object_x1, object_y1; float gradient_x0, gradient_y0, gradient_x1, gradient_y1, gradient_dx, gradient_dy; float trans[6]; unsigned int steps = 10; float x0 = 0, y0 = 0, x0_trans, y0_trans, r0; /* segment start point */ float x1, y1, x1_trans, y1_trans, r1; /* segment end point */ /* segment control points (beziers only) */ float c0x = 0, c0y = 0, c1x = 0, c1y = 0; float gradient_norm_squared; struct svgtiny_list *pts; float min_r = 1000; unsigned int min_pt = 0; unsigned int j; unsigned int stop_count; unsigned int current_stop; float last_stop_r; float current_stop_r; int red0, green0, blue0, red1, green1, blue1; unsigned int t, a, b; struct svgtiny_parse_state_gradient *grad; assert(state->fill == svgtiny_LINEAR_GRADIENT); grad = &state->fill_grad; /* determine object bounding box */ svgtiny_path_bbox(p, n, &object_x0, &object_y0, &object_x1, &object_y1); #ifdef GRADIENT_DEBUG fprintf(stderr, "object bbox: (%g %g) (%g %g)\n", object_x0, object_y0, object_x1, object_y1); #endif if (!grad->gradient_user_space_on_use) { gradient_x0 = object_x0 + svgtiny_parse_length(grad->gradient_x1, object_x1 - object_x0, *state); gradient_y0 = object_y0 + svgtiny_parse_length(grad->gradient_y1, object_y1 - object_y0, *state); gradient_x1 = object_x0 + svgtiny_parse_length(grad->gradient_x2, object_x1 - object_x0, *state); gradient_y1 = object_y0 + svgtiny_parse_length(grad->gradient_y2, object_y1 - object_y0, *state); } else { gradient_x0 = svgtiny_parse_length(grad->gradient_x1, state->viewport_width, *state); gradient_y0 = svgtiny_parse_length(grad->gradient_y1, state->viewport_height, *state); gradient_x1 = svgtiny_parse_length(grad->gradient_x2, state->viewport_width, *state); gradient_y1 = svgtiny_parse_length(grad->gradient_y2, state->viewport_height, *state); } gradient_dx = gradient_x1 - gradient_x0; gradient_dy = gradient_y1 - gradient_y0; #ifdef GRADIENT_DEBUG fprintf(stderr, "gradient vector: (%g %g) => (%g %g)\n", gradient_x0, gradient_y0, gradient_x1, gradient_y1); #endif /* show theoretical gradient strips for debugging */ /*unsigned int strips = 10; for (unsigned int z = 0; z != strips; z++) { float f0, fd, strip_x0, strip_y0, strip_dx, strip_dy; f0 = (float) z / (float) strips; fd = (float) 1 / (float) strips; strip_x0 = gradient_x0 + f0 * gradient_dx; strip_y0 = gradient_y0 + f0 * gradient_dy; strip_dx = fd * gradient_dx; strip_dy = fd * gradient_dy; fprintf(stderr, "strip %i vector: (%g %g) + (%g %g)\n", z, strip_x0, strip_y0, strip_dx, strip_dy); float *p = malloc(13 * sizeof p[0]); if (!p) return svgtiny_OUT_OF_MEMORY; p[0] = svgtiny_PATH_MOVE; p[1] = strip_x0 + (strip_dy * 3); p[2] = strip_y0 - (strip_dx * 3); p[3] = svgtiny_PATH_LINE; p[4] = p[1] + strip_dx; p[5] = p[2] + strip_dy; p[6] = svgtiny_PATH_LINE; p[7] = p[4] - (strip_dy * 6); p[8] = p[5] + (strip_dx * 6); p[9] = svgtiny_PATH_LINE; p[10] = p[7] - strip_dx; p[11] = p[8] - strip_dy; p[12] = svgtiny_PATH_CLOSE; svgtiny_transform_path(p, 13, state); struct svgtiny_shape *shape = svgtiny_add_shape(state); if (!shape) { free(p); return svgtiny_OUT_OF_MEMORY; } shape->path = p; shape->path_length = 13; shape->fill = svgtiny_TRANSPARENT; shape->stroke = svgtiny_RGB(0, 0xff, 0); state->diagram->shape_count++; }*/ /* invert gradient transform for applying to vertices */ svgtiny_invert_matrix(&grad->gradient_transform.a, trans); #ifdef GRADIENT_DEBUG fprintf(stderr, "inverse transform %g %g %g %g %g %g\n", trans[0], trans[1], trans[2], trans[3], trans[4], trans[5]); #endif /* compute points on the path for triangle vertices */ /* r, r0, r1 are distance along gradient vector */ gradient_norm_squared = gradient_dx * gradient_dx + gradient_dy * gradient_dy; pts = svgtiny_list_create(sizeof (struct grad_point)); if (!pts) return svgtiny_OUT_OF_MEMORY; for (j = 0; j != n; ) { int segment_type = (int) p[j]; struct grad_point *point; unsigned int z; if (segment_type == svgtiny_PATH_MOVE) { x0 = p[j + 1]; y0 = p[j + 2]; j += 3; continue; } assert(segment_type == svgtiny_PATH_CLOSE || segment_type == svgtiny_PATH_LINE || segment_type == svgtiny_PATH_BEZIER); /* start point (x0, y0) */ x0_trans = trans[0]*x0 + trans[2]*y0 + trans[4]; y0_trans = trans[1]*x0 + trans[3]*y0 + trans[5]; r0 = ((x0_trans - gradient_x0) * gradient_dx + (y0_trans - gradient_y0) * gradient_dy) / gradient_norm_squared; point = svgtiny_list_push(pts); if (!point) { svgtiny_list_free(pts); return svgtiny_OUT_OF_MEMORY; } point->x = x0; point->y = y0; point->r = r0; if (r0 < min_r) { min_r = r0; min_pt = svgtiny_list_size(pts) - 1; } /* end point (x1, y1) */ if (segment_type == svgtiny_PATH_LINE) { x1 = p[j + 1]; y1 = p[j + 2]; j += 3; } else if (segment_type == svgtiny_PATH_CLOSE) { x1 = p[1]; y1 = p[2]; j++; } else /* svgtiny_PATH_BEZIER */ { c0x = p[j + 1]; c0y = p[j + 2]; c1x = p[j + 3]; c1y = p[j + 4]; x1 = p[j + 5]; y1 = p[j + 6]; j += 7; } x1_trans = trans[0]*x1 + trans[2]*y1 + trans[4]; y1_trans = trans[1]*x1 + trans[3]*y1 + trans[5]; r1 = ((x1_trans - gradient_x0) * gradient_dx + (y1_trans - gradient_y0) * gradient_dy) / gradient_norm_squared; /* determine steps from change in r */ if(isnan(r0) || isnan(r1)) { steps = 1; } else { steps = ceilf(fabsf(r1 - r0) / 0.05); } if (steps == 0) steps = 1; #ifdef GRADIENT_DEBUG fprintf(stderr, "r0 %g, r1 %g, steps %i\n", r0, r1, steps); #endif /* loop through intermediate points */ for (z = 1; z != steps; z++) { float t, x, y, x_trans, y_trans, r; struct grad_point *point; t = (float) z / (float) steps; if (segment_type == svgtiny_PATH_BEZIER) { x = (1-t) * (1-t) * (1-t) * x0 + 3 * t * (1-t) * (1-t) * c0x + 3 * t * t * (1-t) * c1x + t * t * t * x1; y = (1-t) * (1-t) * (1-t) * y0 + 3 * t * (1-t) * (1-t) * c0y + 3 * t * t * (1-t) * c1y + t * t * t * y1; } else { x = (1-t) * x0 + t * x1; y = (1-t) * y0 + t * y1; } x_trans = trans[0]*x + trans[2]*y + trans[4]; y_trans = trans[1]*x + trans[3]*y + trans[5]; r = ((x_trans - gradient_x0) * gradient_dx + (y_trans - gradient_y0) * gradient_dy) / gradient_norm_squared; #ifdef GRADIENT_DEBUG fprintf(stderr, "(%g %g [%g]) ", x, y, r); #endif point = svgtiny_list_push(pts); if (!point) { svgtiny_list_free(pts); return svgtiny_OUT_OF_MEMORY; } point->x = x; point->y = y; point->r = r; if (r < min_r) { min_r = r; min_pt = svgtiny_list_size(pts) - 1; } } #ifdef GRADIENT_DEBUG fprintf(stderr, "\n"); #endif /* next segment start point is this segment end point */ x0 = x1; y0 = y1; } #ifdef GRADIENT_DEBUG fprintf(stderr, "pts size %i, min_pt %i, min_r %.3f\n", svgtiny_list_size(pts), min_pt, min_r); #endif /* There must be at least a single point for the gradient */ if (svgtiny_list_size(pts) == 0) { svgtiny_list_free(pts); return svgtiny_OK; } /* render triangles */ stop_count = grad->linear_gradient_stop_count; assert(2 <= stop_count); current_stop = 0; last_stop_r = 0; current_stop_r = grad->gradient_stop[0].offset; red0 = red1 = svgtiny_RED(grad->gradient_stop[0].color); green0 = green1 = svgtiny_GREEN(grad->gradient_stop[0].color); blue0 = blue1 = svgtiny_BLUE(grad->gradient_stop[0].color); t = min_pt; a = (min_pt + 1) % svgtiny_list_size(pts); b = min_pt == 0 ? svgtiny_list_size(pts) - 1 : min_pt - 1; while (a != b) { struct grad_point *point_t = svgtiny_list_get(pts, t); struct grad_point *point_a = svgtiny_list_get(pts, a); struct grad_point *point_b = svgtiny_list_get(pts, b); float mean_r = (point_t->r + point_a->r + point_b->r) / 3; float *p; struct svgtiny_shape *shape; /*fprintf(stderr, "triangle: t %i %.3f a %i %.3f b %i %.3f " "mean_r %.3f\n", t, pts[t].r, a, pts[a].r, b, pts[b].r, mean_r);*/ while (current_stop != stop_count && current_stop_r < mean_r) { current_stop++; if (current_stop == stop_count) break; red0 = red1; green0 = green1; blue0 = blue1; red1 = svgtiny_RED(grad-> gradient_stop[current_stop].color); green1 = svgtiny_GREEN(grad-> gradient_stop[current_stop].color); blue1 = svgtiny_BLUE(grad-> gradient_stop[current_stop].color); last_stop_r = current_stop_r; current_stop_r = grad-> gradient_stop[current_stop].offset; } p = malloc(10 * sizeof p[0]); if (!p) return svgtiny_OUT_OF_MEMORY; p[0] = svgtiny_PATH_MOVE; p[1] = point_t->x; p[2] = point_t->y; p[3] = svgtiny_PATH_LINE; p[4] = point_a->x; p[5] = point_a->y; p[6] = svgtiny_PATH_LINE; p[7] = point_b->x; p[8] = point_b->y; p[9] = svgtiny_PATH_CLOSE; svgtiny_transform_path(p, 10, state); shape = svgtiny_add_shape(state); if (!shape) { free(p); return svgtiny_OUT_OF_MEMORY; } shape->path = p; shape->path_length = 10; /*shape->fill = svgtiny_TRANSPARENT;*/ if (current_stop == 0) shape->fill = grad->gradient_stop[0].color; else if (current_stop == stop_count) shape->fill = grad->gradient_stop[stop_count - 1].color; else { float stop_r = (mean_r - last_stop_r) / (current_stop_r - last_stop_r); shape->fill = svgtiny_RGB( (int) ((1 - stop_r) * red0 + stop_r * red1), (int) ((1 - stop_r) * green0 + stop_r * green1), (int) ((1 - stop_r) * blue0 + stop_r * blue1)); } shape->stroke = svgtiny_TRANSPARENT; #ifdef GRADIENT_DEBUG shape->stroke = svgtiny_RGB(0, 0, 0xff); #endif state->diagram->shape_count++; if (point_a->r < point_b->r) { t = a; a = (a + 1) % svgtiny_list_size(pts); } else { t = b; b = b == 0 ? svgtiny_list_size(pts) - 1 : b - 1; } } /* render gradient vector for debugging */ #ifdef GRADIENT_DEBUG { float *p = malloc(7 * sizeof p[0]); if (!p) return svgtiny_OUT_OF_MEMORY; p[0] = svgtiny_PATH_MOVE; p[1] = gradient_x0; p[2] = gradient_y0; p[3] = svgtiny_PATH_LINE; p[4] = gradient_x1; p[5] = gradient_y1; p[6] = svgtiny_PATH_CLOSE; svgtiny_transform_path(p, 7, state); struct svgtiny_shape *shape = svgtiny_add_shape(state); if (!shape) { free(p); return svgtiny_OUT_OF_MEMORY; } shape->path = p; shape->path_length = 7; shape->fill = svgtiny_TRANSPARENT; shape->stroke = svgtiny_RGB(0xff, 0, 0); state->diagram->shape_count++; } #endif /* render triangle vertices with r values for debugging */ #ifdef GRADIENT_DEBUG for (unsigned int i = 0; i != svgtiny_list_size(pts); i++) { struct grad_point *point = svgtiny_list_get(pts, i); struct svgtiny_shape *shape = svgtiny_add_shape(state); if (!shape) return svgtiny_OUT_OF_MEMORY; char *text = malloc(20); if (!text) return svgtiny_OUT_OF_MEMORY; sprintf(text, "%i=%.3f", i, point->r); shape->text = text; shape->text_x = state->ctm.a * point->x + state->ctm.c * point->y + state->ctm.e; shape->text_y = state->ctm.b * point->x + state->ctm.d * point->y + state->ctm.f; shape->fill = svgtiny_RGB(0, 0, 0); shape->stroke = svgtiny_TRANSPARENT; state->diagram->shape_count++; } #endif /* plot actual path outline */ if (state->stroke != svgtiny_TRANSPARENT) { struct svgtiny_shape *shape; svgtiny_transform_path(p, n, state); shape = svgtiny_add_shape(state); if (!shape) { free(p); return svgtiny_OUT_OF_MEMORY; } shape->path = p; shape->path_length = n; shape->fill = svgtiny_TRANSPARENT; state->diagram->shape_count++; } else { free(p); } svgtiny_list_free(pts); return svgtiny_OK; } /** * Get the bounding box of path. */ void svgtiny_path_bbox(float *p, unsigned int n, float *x0, float *y0, float *x1, float *y1) { unsigned int j; *x0 = *x1 = p[1]; *y0 = *y1 = p[2]; for (j = 0; j != n; ) { unsigned int points = 0; unsigned int k; switch ((int) p[j]) { case svgtiny_PATH_MOVE: case svgtiny_PATH_LINE: points = 1; break; case svgtiny_PATH_CLOSE: points = 0; break; case svgtiny_PATH_BEZIER: points = 3; break; default: assert(0); } j++; for (k = 0; k != points; k++) { float x = p[j], y = p[j + 1]; if (x < *x0) *x0 = x; else if (*x1 < x) *x1 = x; if (y < *y0) *y0 = y; else if (*y1 < y) *y1 = y; j += 2; } } } /** * Invert a transformation matrix. */ void svgtiny_invert_matrix(float *m, float *inv) { float determinant = m[0]*m[3] - m[1]*m[2]; inv[0] = m[3] / determinant; inv[1] = -m[1] / determinant; inv[2] = -m[2] / determinant; inv[3] = m[0] / determinant; inv[4] = (m[2]*m[5] - m[3]*m[4]) / determinant; inv[5] = (m[1]*m[4] - m[0]*m[5]) / determinant; }