/* * This file is part of Libsvgtiny * Licensed under the MIT License, * http://opensource.org/licenses/mit-license.php * Copyright 2008 James Bursa */ #define _GNU_SOURCE /* for strndup */ #include #include #include "svgtiny.h" #include "svgtiny_internal.h" #define GRADIENT_DEBUG static svgtiny_code svgtiny_parse_linear_gradient(xmlNode *linear, struct svgtiny_parse_state *state); static float svgtiny_parse_gradient_offset(const char *s); static void svgtiny_path_bbox(float *p, unsigned int n, float *x0, float *y0, float *x1, float *y1); /** * Find a gradient by id and parse it. */ void svgtiny_find_gradient(const char *id, struct svgtiny_parse_state *state) { fprintf(stderr, "svgtiny_find_gradient: id \"%s\"\n", id); state->linear_gradient_stop_count = 0; xmlNode *gradient = svgtiny_find_element_by_id( (xmlNode *) state->document, id); fprintf(stderr, "gradient %p\n", gradient); if (!gradient) { fprintf(stderr, "gradient \"%s\" not found\n", id); return; } fprintf(stderr, "gradient name \"%s\"\n", gradient->name); if (strcmp((const char *) gradient->name, "linearGradient") == 0) { svgtiny_parse_linear_gradient(gradient, state); } } /** * Parse a element node. * * http://www.w3.org/TR/SVG11/pservers#LinearGradients */ svgtiny_code svgtiny_parse_linear_gradient(xmlNode *linear, struct svgtiny_parse_state *state) { xmlAttr *href = xmlHasProp(linear, (const xmlChar *) "href"); if (href && href->children->content[0] == '#') svgtiny_find_gradient((const char *) href->children->content + 1, state); unsigned int i = 0; for (xmlNode *stop = linear->children; stop; stop = stop->next) { float offset = -1; svgtiny_colour color = svgtiny_TRANSPARENT; if (stop->type != XML_ELEMENT_NODE) continue; if (strcmp((const char *) stop->name, "stop") != 0) continue; for (xmlAttr *attr = stop->properties; attr; attr = attr->next) { const char *name = (const char *) attr->name; const char *content = (const char *) attr->children->content; if (strcmp(name, "offset") == 0) offset = svgtiny_parse_gradient_offset(content); else if (strcmp(name, "stop-color") == 0) svgtiny_parse_color(content, &color, state); else if (strcmp(name, "style") == 0) { const char *s; char *value; if ((s = strstr(content, "stop-color:"))) { s += 11; while (*s == ' ') s++; value = strndup(s, strcspn(s, "; ")); svgtiny_parse_color(value, &color, state); free(value); } } } if (offset != -1 && color != svgtiny_TRANSPARENT) { fprintf(stderr, "stop %g %x\n", offset, color); state->gradient_stop[i].offset = offset; state->gradient_stop[i].color = color; i++; } if (i == svgtiny_MAX_STOPS) break; } if (i) state->linear_gradient_stop_count = i; return svgtiny_OK; } float svgtiny_parse_gradient_offset(const char *s) { int num_length = strspn(s, "0123456789+-."); const char *unit = s + num_length; float n = atof((const char *) s); if (unit[0] == 0) ; else if (unit[0] == '%') n /= 100.0; else return -1; if (n < 0) n = 0; if (1 < n) n = 1; return n; } /** * Add a path with a linear gradient fill to the svgtiny_diagram. */ svgtiny_code svgtiny_add_path_linear_gradient(float *p, unsigned int n, struct svgtiny_parse_state *state) { /* determine object bounding box */ float object_x0, object_y0, object_x1, object_y1; svgtiny_path_bbox(p, n, &object_x0, &object_y0, &object_x1, &object_y1); #ifdef GRADIENT_DEBUG fprintf(stderr, "object bbox: (%g %g) (%g %g)\n", object_x0, object_y0, object_x1, object_y1); #endif /* compute gradient vector */ float gradient_x0 = 0, gradient_y0 = 0, gradient_x1 = 1, gradient_y1 = 0.7, gradient_dx, gradient_dy; gradient_x0 = object_x0 + gradient_x0 * (object_x1 - object_x0); gradient_y0 = object_y0 + gradient_y0 * (object_y1 - object_y0); gradient_x1 = object_x0 + gradient_x1 * (object_x1 - object_x0); gradient_y1 = object_y0 + gradient_y1 * (object_y1 - object_y0); gradient_dx = gradient_x1 - gradient_x0; gradient_dy = gradient_y1 - gradient_y0; #ifdef GRADIENT_DEBUG fprintf(stderr, "gradient vector: (%g %g) => (%g %g)\n", gradient_x0, gradient_y0, gradient_x1, gradient_y1); #endif /* show theoretical gradient strips for debugging */ /*unsigned int strips = 10; for (unsigned int z = 0; z != strips; z++) { float f0, fd, strip_x0, strip_y0, strip_dx, strip_dy; f0 = (float) z / (float) strips; fd = (float) 1 / (float) strips; strip_x0 = gradient_x0 + f0 * gradient_dx; strip_y0 = gradient_y0 + f0 * gradient_dy; strip_dx = fd * gradient_dx; strip_dy = fd * gradient_dy; fprintf(stderr, "strip %i vector: (%g %g) + (%g %g)\n", z, strip_x0, strip_y0, strip_dx, strip_dy); float *p = malloc(13 * sizeof p[0]); if (!p) return svgtiny_OUT_OF_MEMORY; p[0] = svgtiny_PATH_MOVE; p[1] = strip_x0 + (strip_dy * 3); p[2] = strip_y0 - (strip_dx * 3); p[3] = svgtiny_PATH_LINE; p[4] = p[1] + strip_dx; p[5] = p[2] + strip_dy; p[6] = svgtiny_PATH_LINE; p[7] = p[4] - (strip_dy * 6); p[8] = p[5] + (strip_dx * 6); p[9] = svgtiny_PATH_LINE; p[10] = p[7] - strip_dx; p[11] = p[8] - strip_dy; p[12] = svgtiny_PATH_CLOSE; svgtiny_transform_path(p, 13, state); struct svgtiny_shape *shape = svgtiny_add_shape(state); if (!shape) { free(p); return svgtiny_OUT_OF_MEMORY; } shape->path = p; shape->path_length = 13; shape->fill = svgtiny_TRANSPARENT; shape->stroke = svgtiny_RGB(0, 0xff, 0); state->diagram->shape_count++; }*/ /* compute points on the path for triangle vertices */ unsigned int steps = 10; float x0, y0, x1, y1; float gradient_norm_squared = gradient_dx * gradient_dx + gradient_dy * gradient_dy; struct grad_point { float x, y, r; }; struct grad_point *pts = malloc(n * steps * sizeof pts[0]); if (!pts) return svgtiny_OUT_OF_MEMORY; unsigned int pts_count = 0; float min_r = 1000; unsigned int min_pt = 0; for (unsigned int j = 0; j != n; ) { switch ((int) p[j]) { case svgtiny_PATH_MOVE: x0 = p[j + 1]; y0 = p[j + 2]; j += 3; break; case svgtiny_PATH_LINE: case svgtiny_PATH_CLOSE: if (((int) p[j]) == svgtiny_PATH_LINE) { x1 = p[j + 1]; y1 = p[j + 2]; j += 3; } else { x1 = p[1]; y1 = p[2]; j++; } fprintf(stderr, "line: "); for (unsigned int z = 0; z != steps; z++) { float f, x, y, r; f = (float) z / (float) steps; x = x0 + f * (x1 - x0); y = y0 + f * (y1 - y0); r = ((x - gradient_x0) * gradient_dx + (y - gradient_y0) * gradient_dy) / gradient_norm_squared; fprintf(stderr, "(%g %g [%g]) ", x, y, r); pts[pts_count].x = x; pts[pts_count].y = y; pts[pts_count].r = r; if (r < min_r) { min_r = r; min_pt = pts_count; } pts_count++; } fprintf(stderr, "\n"); x0 = x1; y0 = y1; break; case svgtiny_PATH_BEZIER: fprintf(stderr, "bezier: "); for (unsigned int z = 0; z != steps; z++) { float t, x, y, r; t = (float) z / (float) steps; x = (1-t) * (1-t) * (1-t) * x0 + 3 * t * (1-t) * (1-t) * p[j + 1] + 3 * t * t * (1-t) * p[j + 3] + t * t * t * p[j + 5]; y = (1-t) * (1-t) * (1-t) * y0 + 3 * t * (1-t) * (1-t) * p[j + 2] + 3 * t * t * (1-t) * p[j + 4] + t * t * t * p[j + 6]; r = ((x - gradient_x0) * gradient_dx + (y - gradient_y0) * gradient_dy) / gradient_norm_squared; fprintf(stderr, "(%g %g [%g]) ", x, y, r); pts[pts_count].x = x; pts[pts_count].y = y; pts[pts_count].r = r; if (r < min_r) { min_r = r; min_pt = pts_count; } pts_count++; } fprintf(stderr, "\n"); x0 = p[j + 5]; y0 = p[j + 6]; j += 7; break; default: assert(0); } } fprintf(stderr, "pts_count %i, min_pt %i, min_r %.3f\n", pts_count, min_pt, min_r); unsigned int stop_count = state->linear_gradient_stop_count; assert(2 <= stop_count); unsigned int current_stop = 0; float last_stop_r = 0; float current_stop_r = state->gradient_stop[0].offset; int red0, green0, blue0, red1, green1, blue1; red0 = red1 = svgtiny_RED(state->gradient_stop[0].color); green0 = green1 = svgtiny_GREEN(state->gradient_stop[0].color); blue0 = blue1 = svgtiny_BLUE(state->gradient_stop[0].color); unsigned int t, a, b; t = min_pt; a = (min_pt + 1) % pts_count; b = min_pt == 0 ? pts_count - 1 : min_pt - 1; while (a != b) { float mean_r = (pts[t].r + pts[a].r + pts[b].r) / 3; fprintf(stderr, "triangle: t %i %.3f a %i %.3f b %i %.3f " "mean_r %.3f\n", t, pts[t].r, a, pts[a].r, b, pts[b].r, mean_r); while (current_stop != stop_count && current_stop_r < mean_r) { current_stop++; if (current_stop == stop_count) break; red0 = red1; green0 = green1; blue0 = blue1; red1 = svgtiny_RED(state-> gradient_stop[current_stop].color); green1 = svgtiny_GREEN(state-> gradient_stop[current_stop].color); blue1 = svgtiny_BLUE(state-> gradient_stop[current_stop].color); last_stop_r = current_stop_r; current_stop_r = state-> gradient_stop[current_stop].offset; } float *p = malloc(10 * sizeof p[0]); if (!p) return svgtiny_OUT_OF_MEMORY; p[0] = svgtiny_PATH_MOVE; p[1] = pts[t].x; p[2] = pts[t].y; p[3] = svgtiny_PATH_LINE; p[4] = pts[a].x; p[5] = pts[a].y; p[6] = svgtiny_PATH_LINE; p[7] = pts[b].x; p[8] = pts[b].y; p[9] = svgtiny_PATH_CLOSE; svgtiny_transform_path(p, 10, state); struct svgtiny_shape *shape = svgtiny_add_shape(state); if (!shape) { free(p); return svgtiny_OUT_OF_MEMORY; } shape->path = p; shape->path_length = 10; /*shape->fill = svgtiny_TRANSPARENT;*/ if (current_stop == 0) shape->fill = state->gradient_stop[0].color; else if (current_stop == stop_count) shape->fill = state-> gradient_stop[stop_count - 1].color; else { float stop_r = (mean_r - last_stop_r) / (current_stop_r - last_stop_r); shape->fill = svgtiny_RGB( (int) ((1 - stop_r) * red0 + stop_r * red1), (int) ((1 - stop_r) * green0 + stop_r * green1), (int) ((1 - stop_r) * blue0 + stop_r * blue1)); } shape->stroke = svgtiny_TRANSPARENT; #ifdef GRADIENT_DEBUG shape->stroke = svgtiny_RGB(0, 0, 0xff); #endif state->diagram->shape_count++; if (pts[a].r < pts[b].r) { t = a; a = (a + 1) % pts_count; } else { t = b; b = b == 0 ? pts_count - 1 : b - 1; } } /* render gradient vector for debugging */ #ifdef GRADIENT_DEBUG { float *p = malloc(7 * sizeof p[0]); if (!p) return svgtiny_OUT_OF_MEMORY; p[0] = svgtiny_PATH_MOVE; p[1] = gradient_x0; p[2] = gradient_y0; p[3] = svgtiny_PATH_LINE; p[4] = gradient_x1; p[5] = gradient_y1; p[6] = svgtiny_PATH_CLOSE; svgtiny_transform_path(p, 7, state); struct svgtiny_shape *shape = svgtiny_add_shape(state); if (!shape) { free(p); return svgtiny_OUT_OF_MEMORY; } shape->path = p; shape->path_length = 7; shape->fill = svgtiny_TRANSPARENT; shape->stroke = svgtiny_RGB(0xff, 0, 0); state->diagram->shape_count++; } #endif /* render triangle vertices with r values for debugging */ #ifdef GRADIENT_DEBUG for (unsigned int i = 0; i != pts_count; i++) { struct svgtiny_shape *shape = svgtiny_add_shape(state); if (!shape) return svgtiny_OUT_OF_MEMORY; char *text = malloc(20); if (!text) return svgtiny_OUT_OF_MEMORY; sprintf(text, "%i=%.3f", i, pts[i].r); shape->text = text; shape->text_x = state->ctm.a * pts[i].x + state->ctm.c * pts[i].y + state->ctm.e; shape->text_y = state->ctm.b * pts[i].x + state->ctm.d * pts[i].y + state->ctm.f; shape->fill = svgtiny_RGB(0, 0, 0); state->diagram->shape_count++; } #endif /* plot actual path outline */ if (state->stroke != svgtiny_TRANSPARENT) { svgtiny_transform_path(p, n, state); struct svgtiny_shape *shape = svgtiny_add_shape(state); if (!shape) { free(p); return svgtiny_OUT_OF_MEMORY; } shape->path = p; shape->path_length = n; shape->fill = svgtiny_TRANSPARENT; state->diagram->shape_count++; } return svgtiny_OK; } /** * Get the bounding box of path. */ void svgtiny_path_bbox(float *p, unsigned int n, float *x0, float *y0, float *x1, float *y1) { *x0 = *x1 = p[1]; *y0 = *y1 = p[2]; for (unsigned int j = 0; j != n; ) { unsigned int points = 0; switch ((int) p[j]) { case svgtiny_PATH_MOVE: case svgtiny_PATH_LINE: points = 1; break; case svgtiny_PATH_CLOSE: points = 0; break; case svgtiny_PATH_BEZIER: points = 3; break; default: assert(0); } j++; for (unsigned int k = 0; k != points; k++) { float x = p[j], y = p[j + 1]; if (x < *x0) *x0 = x; else if (*x1 < x) *x1 = x; if (y < *y0) *y0 = y; else if (*y1 < y) *y1 = y; j += 2; } } } /** * Find an element in the document by id. */ xmlNode *svgtiny_find_element_by_id(xmlNode *node, const char *id) { xmlNode *child; xmlNode *found; for (child = node->children; child; child = child->next) { if (child->type != XML_ELEMENT_NODE) continue; xmlAttr *attr = xmlHasProp(child, (const xmlChar *) "id"); if (attr && strcmp(id, (const char *) attr->children->content) == 0) return child; found = svgtiny_find_element_by_id(child, id); if (found) return found; } return 0; }